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Summary

Complete data matrices are necessary for some multivariate techniques,
so imputation of missing values is regquired in certain circumstances.
Existing techniques are briefly reviewed, and a new method is proposed.
This method is based on the singular value decomposition of a matrix, and
does not make any distributional or structural assumptions about the data.
It should therefore be suitable for a large variety of situations. The
method is illustrated on a small data set from which values have been
deleted at random.

1. INTRODUCTION

Many biometrical problems involve multivariate data. Such data can be
arranged in an (nxp) data matrix X, the ii,,j)"h element of which gives the
value observed for the j“‘ response (variable) on the i“' individual
(case) in the sample. Common biometrical techniques used to analyse such
data include principal component analysis; canonical variate or
discriminant analysis (if the individuals in the sample form a-priori
groups); canonical correlation analysis (if the variables form a-priori
groups); and cluster analysis (if some partitioning of the sample is
sought). To obtain full benefit from these analyses, the data matrix must
be complete. When this is so, techniques such as principal component
analysis, canonical variate analysis and canonical correlation analysis
which depend on linear transformations of the original variables will
provide scores on all transformed variables for all individuals in the
sample. Plotting the scores against each other by using transformed

variables as axes is a valuable aspect of the analysis, as it gives an
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optimal view of the individuals in the sample with regard to some specific
objective. Thus a plot of principal component scores gives a (low-
dimensional) representation of the data values in such a way as to
maximise between-individual variability; a plot of the canonical variate
scores gives a (low-dimensional) representation of the data values in such
a way as to highlight between-group differences relative to those within
groups; while a plot of the canonical correlation scores shows the nature
of the scatter of sample values that gives rise to a particular canonical
correlation. Patterns highlighted by these plots give valuable insights
into the data that have been collected.

Frequently, however, the process of data collection does not supply a
complete data matrix. Some variables are not recorded (or the values are
lost) for some individuals, thereby giving gaps in the original data. For
example, in an agricultural experiment some results may not be available
because animals die or because plants are damaged. Sometimes the fact that
the variable is missing indicates that its true value is probably unusual,
and in these circumstances any mechanical method of analysis may be very
misleading. On the other hand, information about some variables may simply
not be readily available. This may be so particularly if the relevance of
the information is uncertain, as in exploratory work. How can we make the
maximum use of the available data so as to obtain the best analysis?

The literature on the analysis of partially missing data is
comparatively recent, as many of the proposed methods require very heavy
computations that have only become manageable since computer power
increased dramatically in the late 1970’'s. A complete account of currently
available methods is given by Little and Rubin (1987). In general, there
are two possible strategies for obtaining a multivariate analysis in the:
face of partially missing data:

(i) use the available data to estimate all the necessary
parameters (e.g. mean vectors or dispersion matrices) that are
required by the analysis, and proceed without further recourse
to the raw data;

(ii) use the available data to estimate all missing values, impute
these estimates into the data matrix and then conduct the
analysis on the completed matrix.

The former strategy will usually lead to the main aspects of the
analysis, but will not enable scores to be calculated for any individuals
whose data vectors are incomplete, while the latter strategy will allow
computation of all scores in addition to the remainder of the analysis.

We therefore focus attention exclusively on imputation methods in
this paper. Existing methods are briefly reviewed in Section 2, a new
method"is proposed in Section 3 and some examples of its use are given in
Section 4. This method is suitable primarily for those situations in which
principal component analysis is applicable. Some comments about possible
generalization to other multivariate situations are made in Section 5.



2. EXISTING METHODS OF IMPUTATION

Suppose that an individual with the value of X, missing contains the
values of éthor variables Xk, x_, etc, that are correlated with xJ. The
earliest suggested form of imputation was to estimate the missing value
xiJ by IJ. i.e. by the mean of the recorded values of xJ (taken within a
specified group if appropfiate). While this method is extremely simple,
its disadvantages are that:

(i) variances and covariances are systematically underestimated (a
natural consequence of imputing values at the centre of the
distribution), and

(ii) no information on correlations between XJ and each of the
other variables is used in forming the imputed values.

To get over disadvantage (i) we could impute the value §J+ cJ for a
missing xij' where cJ is a random quantity having zero mean and variance
equal to the variance of XJ. To get over disadvantage (ii) we must
consider conditional rather the unconditional means.

A more promising form of imputation is thus to substitute means that
depend on the variables recorded in incomplete rows of the data matrix. If
the variables xl....,xp are multivariate normal with mean @ and
dispersion matrix £, then the missing values in a particular case have
linear regressions on the observed variables, with regression coefficients
that are well-known functions of m and £. The method proposed by Buck
(1960) first estimates pm and £ as the sample mean vector and covariance
matrix using just the complete cases, and then uses these estimates to
calculate the linear regression of the missing variables on the recorded
variables for each case. Substituting the observed values of the recorded
variables for a case in the appropriate regression yields predictions (and
hence imputed values) for the missing values in that case. Computations
can be arranged systematically using the "sweep" operator (Little and
Rubin, 1987). There is still some underestimation of variances and
covariances, but much less than with the unconditional means estimation.
It can again be corrected by adding a small random perturbation to the
conditional mean before imputation.

Beale and Little (1975) considered maximum likelihood estimation of
the parameters of a multivariate normal distribution when some data values
are missing, and developed an iterative scheme. This scheme is an example
of the more general E-M algorithm (Dempster, Laird and Rubin, 1977)
consisting of two basic steps, the expectation (E) step and the
maximisation (M) step. The E step requires missing values to be replaced
by estimates of their expectations given the model and current parameter
estimates, and in the multivariate normal case is just Buck’s method
described above. The M step requires the multivariate normal parameters to
be re-estimated given these imputed values and the recorded data values;
the relevant estimates are set out by Beale and Little (1975). Initial
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parameter estimates from complete cases start the process off, and then
imputed values and parameter estimates are successively refined until they
stabilise. This scheme is thus an iterated version of Buck’s method and
producee imputed values as a by-product of the parameter estimation.

Note therefore that all the available imputation methods (apart from
the crude imputation of means) rely for their Jjustification on the
assumption of multivariate normality. Little and Rubin (1987) claim that
the multivariate normal assumption can be relaxed considerably without
invalidating use of the method, while Little (1988) refines the E-M
algorithm to allow robust estimation of the model parameters. However,
what is currently unavailable in the literature is a perfectly general
imputation scheme free of any distributional constraints, and the purpose
of this paper is to propose such a method.

3. AN IMPUTATION SCHEME USING THE SINGULAR VALUE
DECOMPOSITION OF THE DATA MATRIX

Consider the (nxp) data matrix X, where n2p. If p>n then the (pxn)
transpose X’ should replace X in all the following and the roles of p
and n should be interchanged. Any such matrix X can be decomposed via
the singular value decomposition (Good, 1969) into the form

X = UDV’ (1)
where U0 = Ip, V'V = VW = Ip and D= diag(dl,...,dp) with
dlz dzz ok dpz 0. The matrices X'X and XX’ have the same eigenvalues,
and the elements di are the square roots of these eigenvalues; the
ithcolunn Vg (vil,...,vip)' of the (pxp) matrix V is the eigenvector
corresponding to the i largest eigenvalue df of X'X; while the jth
column u; = (uli,...,uni)’ of the (nxp) matrix U is the eigenvector
corresponding to the ith largest eigenvalue df of XX’. Decomposition

(1) has its elementwise representation

X35 = tgluitdtvtj (2)

Krzanowski (1987) used this representation as a basis for determining
the dimensionality of a m.ltivariate data set: if the data structure is
essentially m-dimensional then the variation in the remaining (p-m)
dimensions can be treated as random noise. The main features of the data
can thus be supposed to lie in the space of the first m principal
components. The correspondence between the quantities on the right-hand
side of (2) and the principal axes of the data configuration suggests,
therefore, the m-component model

m
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where cij is a residual term.

Now suppose that model (3) holds for a specified value of m, but that
the single observation x” is missing from the data matrix. Then xij is
estimated by
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where the U4 dt' v‘_‘j must be estimated from the rest of the data. The

best estimates of these latter quantities will be those based on the

maximal amount of data. Denote by X(_i) the data matrix obtained on

deleting the :i.th row from X, and by X(_j) the data matrix obtained on

deleting the jth column from X. Let the singular value decomposition of

these matrices be as follows:

x("D2 G5 with 0= (@), V= (v ) and D = diag(d;,...,d) (5)

and

~ o~ ~

X(_j)= UDV’ with U= (uy), V=(v,) endb= diag(d,,...,d (6)

st p—l)

The maximum-data estimates of Uy and Ve in (4) are clearly Uiy and ;tj
respectively, while d, can be estimated either by -dt’ dt or by some

t
combination of the two. A suitable compromise seems to be Y at 4 dt’
whence an estimate of the missing value xij is given (cf Krzanowski,

1987, p.579) by
~(m) _ m ~ = L] =
x5 = t§1 “it' d, vtjf d, . (7)
Finally, following the maximum-data precept, we use the highest value
of m that we can. From (6) this is evidently p-1, so that the value

which is to be imputed for xij will be
- p-1 ~ = £ =
e t§1 [“it' dt] [th' dt] ; )

If there is more than one missing value in the data, an iterative
scheme can be readily set up. Starting with initial estimates imputed for
all the missing values, each missing value is re-estimated in turn using
(8). Each of these estimates requires two singular value decompositions,
namely those of x(’i) and X(_j) for the required i and j (using ‘the
current missing value estimates to "fill-out" X). However, singular value
decomposition algorithms are computationally fast and readily available on
standard software (e.g. NAG system, Numerical Algorithms Group, Oxford) so
computing is not a problem. The process is iterated until stability is
achieved in the imputed values. A simple initial estimate ;i' is provided

by the mean ;‘j of the jth variable; alternatively the initial value



;J* SJ as defined in the first paragraph of Section 2 is equally
acceptable.

On a computational level, the best accuracy of prediction seems to be
achieved when the entries in different columns of X are comparable in size
and there is relatively little variation among the di' The most stable
procedure is thus one in which the mean .J and standard deviation s, of
column j (j=1,...,p) are first found from the values present in that
column. Existing entries xiJ .of X are then standardised to
xij = (xij- IJ)/!J, estimates x;t of missing values are found by
,pplying (8) to the sE’ndArdiled q;tn, and then the final imputed values

x are obtained from x =m+ 8

’
rt rt t* St*re’

4. EXAMPLES

To illustrate the performance of the technique, let us consider a
simple multivariate data set. Table 1 presents the data relating to 20

Table 1. Data for twenty samples of soil

Sample Xy Xy Xq Xy Xg
1 77.3 13.0 9.7 1.5 6.4
2 82.5 10.0 7.5 1.5 6.5
3 66.9 20.6 12.5 2.3 7.0
4 47.2 33.8 19.0 2.8 5.8
5 65.3 20.5 14.2 1.9 6.9
6 83.3 10.0 6.7 2.2 7.0
7 81.6 12,7 5.7 2.9 6.7
8 47.8 36.5 16.7 2.3 7.2
9 48.6 37.1 14.3 2.1 7.2

10 61.6 25.5 12.9 1.9 7.3

11 58.6 26.5 14.9 2.4 6.7

12 69.3 22.3 8.4 4.0 7.0

13 61.8 30.8 7.4 2.7 6.4

14 67.7 25.3 7.0 4.8 7.3

15 57.2 31.2 11.6 2.4 , 6.5

16 67.2 22.7 10.1 3.3 6.2

17 69.2 31.2 9.6 2.4 6.0

18 80.2 13.2 6.6 2.0 5.8

19 82.2 11.1 617 2.2 7.2

20 69.7 20.7 9.6 3.1 6.9

samples of soil given by Kendall (1980, P.20); percentages of snd content
(xl). s8ilt content (xz). clay content (xa). organic matter (x4) and pH
(xs) are 'shown for each of the samples.

Note that here x1+ x2+ X3 = 100; applying any regression-based
technique to these raw data would incur multicollinearity problems, but
the singular-value approach of this paper can be applied directly without
any computational drawbacke. Missing values were introduced into this data
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set at random as follows. Pseudo-random numbers lying between 0 and 1 were
generated on the computer using the NAG package (Numerical Algorithms
Group, Oxford). For a fixed value of r (0<r<l1l), if the (51+J)th random
number was less than r then the element in the (i+1.j)th position of
the data matrix was deleted (i = 0,...,19; j =1,...,5). The expected
proportion of missing valués in the data is thus r. The technique was
tried for. various values of r up to 0.3 and gave satisfactory results. A
summary of the outcome for one of these cases, r = 0.2, is given in Table
2.

Table 2. Estimates of missing values introduced into the data of Table 1
by random deletion

Matrix Data values Estimates Estimates

elements in these based on obtained from

deleted positions simple means equation (8)
(1,3) 9.7 11.36 8.59
(2,1) 82.5 65.86 81.33
(3,5) 7.0 6.66 6.71
(4,2) 33.8 22.15 36.52
(6,3) 6.7 11.36 9.22
(6.4) 2.2 2.51 1.74
(10,1) 61,6 65.86 59.14
(10,4) 1.9 2.51 3.48
(12,3) 8.4 11.36 10.57
(12,4) 4.0 2.51 2.99
(15;1) 57.2 65.86 58.41
(16,3) 10.1 11.36 8.85
(16,5) 6.2 6.66 6.89
(17:3) 9.6 11.36 11.86
(17,4) 2.4 2.51 3.66
(18,1) 80.2 65.86 76.03
(18,3) 6.6 11.36 10.27

The expected number of missing values in this case is 20; in the
actual execution of the procedure, 17 values were deleted from the data
matrix. Column 1 of Table 2 gives the positions of the matrix elements
that were selected for deletion while column 2 gives the true values in
these positions. Column 3 then shows the simple estimate of each value
given by the mean of all non-missing values in the corresponding column of
X, while column 4 shows the estimates obtained from the method of Section
3 above. The improvements of the latter over the former are obvious; in
only 5 cases are the estimates of column 4 further from the true values
than those of column 3 (and then only marginally so), while in many of the
remaining cases the column 4 estimate is substantially better than the
column 3 estimate. Comparable 'results were obtained in all other
simulations that were conducted.
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5. COMMENT

Thus the method appears to be highly promising. Further investigation
is clearly necessary, but the main point in its favour is the lack of
dependence on any assumptions about the data (whether structural or
distributional). The singular value decomposition is applicable to any
numerical data matrix, so the method should be valid for a very wide range
of practical situations.

The context of the above development has been that of a single
unstructured data matrix X; and hence the situations in which the method
is naturally applicable are those in which principal component analysis is
appropriate. In some situations there is an additional a-priori structure
imposed on the data matrix. For example, the n individuals in the sample

way have come from k separate populations (with ng individuals coming

k
from the ith such population and } ne n). The (nxp) data matrix may
i=n

thus be subdivided by rows into k submatrices Xi, the ith of which is

(nixpl. A canonical variate analysis would seek an optimal representation
of the data to highlight differences between the k populations.
Alternatively, the P measured variables may fall into two a-priori
groups of Py and Py variables respectively, and a canonical correlation
analysis would seek to explore the relationships between these two sets of
variables. In this case the data matrix X may be paftitioned into the form
(x1 : Xz), where Xi is (nxpi) fors 1 = 142:

If imputation of missing values is required in these situations, a
simple-minded approach would be to treat each of the submatrices xi
separately by the method described in this paper. However, a referee has
pointed out that such an approach will not take into account the structure
of data implicit in the corresponding multivariate technique. Both
canonical variate and canonical correlation analysis involve the
eigenvalues and eigenvectors of one matrix with respect to another, rather
than just those of a single matrix. Consequently, a missing value
imputation scheme should be based on a more general singular value
decomposition (see, e.g., Rao and Mitra, 1971, p.7). Such an approach also

needs further investigaticn.
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Uzupelnianie brakujgcych obserwacji w danych wielowymiarowych przy uzyciu

dekompozycji pewnej macierzy wediug wartosci osobliwych

Streszczenie

Niektére techniki wielowymiarowe wymagaja, aby macierz danych byta
kompletna. W pewnych warunkach niezbedne jest wiec szacowanie brakujacych
wartodci. Praca zawiera krétki przeglad istniejacych metod oraz proponuje
nowa. Metoda ta oparta jest na dekompozycji pewnej macierzy wediug
wartosci osobliwych i nie wymaga zadnych zalozen dotyczacych rozkiadu lub
struktury danych. Z tego wzgledu powinna by¢ odpowiednia dla wielu réznych
sytuacji. Przedstawiono wykorzystanie metody dla matego zbioru danych, z

ktérego pewne warto$ci zostaly usuniete w sposéb losowy.
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